$\sqrt{2}$ Comakton	Homework 1 Organic Chemistry II (CHM 222/224) • Prof. Chad Landrie		
Score (4 pts)	Lectures	1-2	Name

1. Write the name of the principal functional groups in the following molecules. Spelling counts!

2. Draw an example of the molecule described. Structure should be in bond-line notation (i.e., do not write carbons and hydrogens explicitly).

Aldehyde with only 3 carbon atoms	Amide with the molecular formula $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}$.	Secondary alcohol with only 5 carbon atoms.	Phenol with a methyl group at the meta position.

3. First, Rank in order of increasing boling point (1 = lowest boiling point; 4 = highest boiling point). Second, circle the compound that is likely the most polar.

\qquad
4. Determine the oxidation number for each carbon indicated.

5. Why might the first reaction above be considered an oxidation or a reduction?
6. The Dess-Martin periodinane oxidation is another common mild method for oxidizing primary alcohols to carbonyls. Draw a mechanism for the reaction below. Hint: Acetate groups $\left(-\mathrm{OAc} ;-\mathrm{OCOCH}_{3}\right)$ are good leaving groups and the first step is substitution of an acetate group by the alcohol.

7. First, rank the compounds in order of increasing C-O bond length ($1=$ shortest; $3=$ longest). Second, explain your ranking. Discuss hybridization and draw resonance structures to support your conclusions.

\qquad
8. Sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$ is the conjugate base of carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}, \mathrm{pKa}=6.37\right)$. First, draw the products of the reaction of sodium bicarbonate with phenol and acetic acid. Second, use your book to determine the pKa values of a phenol and a carboxylic acid. Third, calculate the Keq for each acid-base reaction and determine which of these substances will react significantly (i.e., $\mathrm{K}_{\text {eq }}>1$) with sodium bicarbonate. Show your work.

$+\mathrm{NaCHO}_{3} \rightleftharpoons$

2-methylphenol a phenol

$+\mathrm{NaCHO}_{3}$
acetic acid
a carboxylic acid
9. Provide IUPAC names for the following structures.

10. When (R)-(+)-2-phenyl-2-butanol is allowed to stand in methanol containing a few drops of sulfuric acid racemic 2-methoxy-2phenylbutane is formed. Draw a reasonable mechanism then explain.
11. Unlike aldehydes and ketones, esters cannot be reduced by NaBH_{4}, but are readily reduced by LiAlH_{4}. Explain this observation. Your reasoning should include a discussion of the ground state energies of $\mathrm{NaBH}_{4} \mathrm{vs}$. LiAlH_{4} and for ketones vs. esters. Draw resonance structures where appropriate to support your logic.
12. Rank the following phenols in order of increasing acidity ($1=$ least acidic, highest $\mathrm{pKa} ; 4=$ most acidic, lowest pKa).

13. Draw the conjugate base for the two left-most structure in the problem above. Include all lone-pairs and charges. Next, draw all possible resonance structure for each conjugate base that shows delocalization of the negative charge on oxygen.
\qquad
14. Draw the major organic product for each reaction. Include stereochemistry where it is relevant.

\qquad
15. Devise a synthesis for each of the following. Show the major product after each step in your synthesis.

